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A boundary integral equation (BIE) formulation is presented for the numerical solution of 
certain two-dimensional nonlinear elliptic equations subject to nonlinear boundary conditions. 
By applying the Kirchoff transformation, all nonlinear aspects are first transferred to the 
boundary of the solution domain. Then the accurate solution of problems in which there are 
boundary singularities is demonstrated by including the analytic nature of the singular 
solution in only those regions nearest the singularity. Because of this, only a minor 
modification of the classical nonlinear BIE is required and this results in a substantial 
improvement in the accuracy of the numerical results throughout the entire solution domain. 
The BIE has previously been applied to either nonlinear or singular problems and so the 
method presently described constitutes an extension in this field. es 1984 Academic Press, Inc. 

INTRODUCTION 

Integral methods for solving boundary value problems in mathematics, engineering 
and physics have been gaining in popularity in recent years [l-3]. In such methods 
the governing Iield equations are recast, by application of the divergence theorem [4], 
into a system of coupled integral equations which apply only on the boundary of the 
solution domain. These integral equations are usually intractable by analytic methods 
and thus much attention has been given to their numerical solution using a variety of 
approximating techniques [S-7]. 

One immediate advantage of the reformulation is that the equations apply only on 
the boundary of the solution domain whereas space discretisation techniques such as 
finite difference (FD) or finite element (FE) evaluate information at many interior 
points. The boundary integral equation (BIE) method uses only the boundary data to 
compute the solution at any interior point and it is found that a high degree of 
resolution may be obtained. An immediate consequence of this is that the system of 
algebraic equations generated by a BIE is considerably smaller than that generated 
by an equivalent FD or FE approximation. 
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The BIE method has, over the last decade, proved to be an effective tool for the 
numerical solution of two-dimensional harmonic boundary value problems (BVP) 
containing singularities (e.g., [5, 71 j. It is well known that the presence of one or 
more boundary singularities tends to decrease the rate of convergence of numerical 
solution with decreasing mesh size, a phenomenon first noted by Motz [8] and 
Woods [9], who investigated singular elliptic problems using FD and relaxation 
techniques. Symm [5] showed how the classical BIE [I] couid be modified to incor- 
porate the analytic nature of a singularity whenever it occurred on the boundary of 
the solution domain. The results of this technique, subsequently referred to as 
singularity subtraction (SS), were appreciably more accurate than those of the 
classical BIE, and encouraged applications in the fields of heat transfer [7], elec- 
trostatics ] 101 and viscous fluid mechanics [ 111. 

The improved accuracy of the SS technique was obtained at the expense of a large 
increase in analysis and computer code. More recently, Xanthis et al. [ 12, Sect. 3.2 ] 
suggested a method in which the analytic nature of the singularity is incorporated 
into the BIE by the introduction of special functional behaviour over those segments 
of the boundary nearest the singularity. This greatly reduces the amount of extra 
analysis and programming required to modify the classical BIE, and the results of 
this method are of comparable accuracy to the SS technique. 

The solution of nonlinear problems in heat transfer using BIE techniques is well 
established, see, for example, the investigations of Khader [ 131, Bialecki and Nowak 
[ 141, Ingham et al. [ 151 and Khader and Hanna [ 161. Each of the studies [13-161 
deals with the aspects of nonlinear boundary conditions while [ 131, [14 j and [IS] 
deal with temperature-dependent thermal conductivity by first employing the Kirchorf 
transformation [ 171. However, all of these studies were restricted to nonsinguiar 
problems. 

The contribution of the present work is to combine the singular character of the 
solution with the application of the Kirchoff transformation to solve the full singular, 
nonlinear problem, i.e., nonlinear governing equation, nonlinear boundary conditions 
and boundary singularity. The singularity treatment in [ 121 was used rather than the 
SS technique because it is far from clear whether or not the SS technique is 
applicable to nonlinear integral equations. and even if it were, the extra anaiysis and 
ensuing algorithm would be so excessively complicated that it would far outweigh the 
advantages of its application. 

The method is illustrated by an application to a problem of two-dimensional 
steady-state heat transfer, the conducting medium having variable thermal conduc- 
tivity. The boundary conditions are chosen to illustrate the applicability of the 
method to (a) a dominant boundary singularity and (b) highly nonlinear boundary 
conditions. The resulting system of nonlinear algebraic equations were solved by 
application of the Newton Raphson technique [ 181 which provided converged 
solutions for the whole range of system parameters considered. 
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FORMULATION 

We shall consider the solution of the nonlinear elliptic equation 

v * v-(P) VP1 = 0 (1) 

for the two-dimensional potential Ed in the region Q enclosed by boundary afi. Here f 
may be any function of ~1 such thatf(q) remains bounded throughout B + &Q, and so 
depending on the nature off; Eq. (1) may be highly nonlinear. Note that Eq. (1) has 
physical applications in, for example, the field of heat transfer in which case f is the 
thermal conductivity of the medium within XJ and q is the temperature field [ 141, 
and in the field of magnetostatics, where f is then the magnetic permeability, v, the 
magnetic scalar potential and Eq. (1) reduces to the Maxwell equation V . B = 0 for 
the magnetic field B [ 191. 

The first step in solving Eq. (1) using a BIE formulation is the introduction of the 
transformed variable T which satisfies 

VT=.f (~1 VP. (2) 

Equation (2) is a form of the Kirchoff transformation given in [ 13, 14, 161, and may 
be justified by noting that the curl of the right-hand side is identically zero for any 
functions f and o. Then from Eqs. (1) and (2) T satisfies Laplace’s equation 

V2T= 0 (3) 

in 52 + BQ. The application of the BIE method to the solution of Eq. (3) is well 
documented [ 5-7, 15 ] and consequently only those points necessary to facilitate 
concise explanation of the present method will be included. 

Green’s Integral Formula for T may be expressed as (see Ref. [ 11) 

V(P) T(P) = jiirr 1 T(q) log’ I P - 4 I - T’(q) log I P - 4 II & (4) 

where (i) p E 0 + 88, q E ~QR; (ii) dq denotes the differential increment of aQ at q; 
(iii) a prime denotes differentiation with respect to the outward normal to &J at q; 
(iv) 11(p) is defined by 

if p6Ll2+%0 

ifp E aJ2 

ifpE:D 

where a! is the angle included between the tangents to 80 on either side ofp. If either 
T or T’ are prescribed at each point q E aQ then the solution of the boundary 
integral equation obtained by letting p = q E afi in Eq. (4) determines the boundary 
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distribution of both T and T’. Equation (4) may now be used to generate the solution 
T(p) at any point p E i2 + 82. 

Defining g(q) by 

and employing Eq. (2), we may write the Kirchoff transformation in the form 

relating the original and transformed BIE variables. Combining Eqs. (4) and (6) then 
gives 

- V(P) V(P) dyl(P)l = 0, pEi2+$aa.qE;iQ (7j 

as the nonlinear integral equation on %R. Iterative solution of this equation (plus 
prescribed boundary conditions) constitutes the BIE solution to this problem 
(e.g., [lj]). 

Although the formulation is applicable to problems containing a general bounded 
functionf(v), we shall restrict our study to a physical problem in heat transfer. In 
this case the function f is the thermal conductivity of the medium and is denoted by 
k. For any medium, k is usually obtained on the basis of experimental results which 
provide some form of empirical relationship with q [20]. It is found that k usually 
exhibits an almost-linear variation with v, and deviates from this behaviour only at 
large temperatures. The present formulation permits any bounded variation of k with 
o but we shall illustrate the method with a particular example in which k is a 
polynomial in P. For simplicity we shall assume a quadratic variation, namely, 

k(y) = k, + k,v + k+,o’ i.8 \ 

in which there are no restrictions on the values of the real constants k,, .k; and kz. 
By considering the ways in which heat may be dissipated across the surface of a 

body into the surrounding medium one finds that there is a contribution from 
convection, which obeys Newton’s law of cooling [20] 

Y’ CO”\ K 9 - V)amh (9a) 

and another from radiation, which obeys Stefan’s law [20] 

W:ad z (Y - Y7,rnh)4 <9b) 

where yamb is the temperature of the region surrounding aa. Adding to these the 
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possibility of heat sources or sinks on %.f2, the most general form of the boundary 
heat flux condition is therefore 

P’(4) = &I) +/J(q) P(4) + Ymd4)14~ qEa2 (10) 

where 9 = +/an is the heat flux across %Q and the scaling is such that qarnb is zero. 
Thus the coefficients CI, /3 and y in Eq. (10) are, respectively, those related to the heat 
source/sink, convection and radiation at each point q E ~32. 

We choose J2 to be the rectangle defined by -5 < x < 5, 0 < 4’ < 1 so that certain 
results may be compared with those of Symm [5] and Whiteman and 
Papamichael [21]. Further, we prescribe the boundary conditions on ii0 to be 

lJ)=l on 1’ = 0, x < 0 VW 

ql’=O on J’ = 0, x > 0 (1 lb) 

fp’=a,+prp+yrp4 on x=5 (1 lc) 

p=o on 4’=5 (1 Id) 

v’ = a2 +Pzv, + Y2P4 on x=-5 (lie> 

so that there is a discontinuity in boundary conditions on y = 0 at x = 0 which we 
shall subsequently refer to as the singularity S (see Fig. 1). The parameters k,, k, , 
k2, CI, , ,!Ii, y, , (x2, p2 and 1~~ of Eq. (8) and conditions (11) are real constants, and 
conditions (11) are such that when k, = 1 and the other eight parameters are all zero, 
the problem is linear so that results may be compared with the SS BIE of Symm [5], 
as well as the analytic solution generated by the conformal transformation method 
(CTM) of Whiteman and Papamichael [21]. This allows a comparison of our results 
with those of alternative analytical and numerical schemes. 

y=5 

I boundary dfl f 
VP=0 

I 

v . (ka +k19+k29*) V9 I = 0 

region Cl 

‘p = a1 + P,9 + 

FIG. 1. Solution domain and boundary conditions. 
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The method used for the treatment of the singularity is a basic variant of that 
presented by Xanthis et al. [ 12, Section 3.21 in which the solution near S is approx- 
imated by the introduction of special functions displaying the required singular 
behaviour. The methods in [ 121 give a more sophisticated treatment of the solution in 
the remainder of R than does the present work, but we shall show that sufftciently 
accurate results were obtained using the present formulation. We begin by using 
Eq. (6) to transform the boundary conditions (1 la) and (I lb) so that 

T=g(l) = r,, say,ony=O,x<O (123) 

T’ = 0 ony=O,x>@. (lab) 

By considering separated solutions of Eq. (3) in plane polar coordinates (t’: 8) 
centered on S (see Fig. l), and enforcing conditions (12a) and (12b), we find that 

1% 81 

A, = (2n - 1)/2, n = 1, 2..... (13) 

in the neighbourhood of S. The constants E,, n = 1,2,..., are referred to as ihe 
singularity expansion coefficients. Observe that Eq. (13) shows that S is an ‘*Y”’ 
singularity” and is therefore the most dominant form of singularity possible for 
harmonic problems. Hence if the present method is effective on this form of 
singularity it should readily cope with weaker forms of singular behaviour. 

In practice Eqs. (4) and (7) may rarely be solved analytically and so a numerical 
solution procedure is adopted [.5]. The boundary is first discretised into N straight 
line segments ZGj, j = l,..., N, on each of which the variables T and T’ are approx- 
imated by the piecewise constant values Tj and Tj . This is the “classical” BIE for the 
solution of Eq. (4) [5, 71. In the present formulation the behaviour of Eq. (13) is 
incorporated into the boundary variation in T and T’ on the boundary segments &2, 
nearest S. By enforcing this behaviour on, for example: the M segments nearest S, we 
are able to evaluate the constants E 1,..., E,~, since the unknown physical variables T 
and T’ are replaced by linear combinations of the unknown E’S on these segments. 
This means that if the behaviour of Eq. (13) is enforced at M segments nearest S, it 
must be in the form of a truncated series terminating in the E,~~ term. 

Numbering the boundary segments in an anticlockwise direction from S so that S 
represents the common endpoint of segments &?r and %R, , we now postulate that 
the behaviour of Eq. (13) applies on aQR, and %.R,V, so that for the present illustration, 
we require only the values of sr and s2. Assuming piece-wise constancy of T and T” 
over the remaining segments, we therefore have 

T= Tj, T’ = T; on aaj,j=2 ,..., N- I (14aj 

T= To + &,r’j2 + c2rsi2 on a.0: (14b) 

T’ = JElr-l!2 + ;e2rl!2 on L?C?, . (14cj 
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On the basis of approximations (14), the discretised form of Eq. (4) becomes 

+ jao (T,, + ~1 r-l’* +E*r3’*)log’lP-qJdq 
- j,,’ (-+&,r-“* +g*r”*)logIp-ql& N 
- V(P) T(P) = 0 (15) 

where p E D + XI, q E &2 and r = r(q). Collocating Eq. (15) at the midpoint p = qi, 
i= 1 ,..., N, of each boundary segment generates the system of algebraic equations 

4 

N-l 

,2* 

A,Tj+ x BijTj'+AilTofF,Gi+E2Hi=O, i = I,..., N (16) 
j=l 

where 

A,= ( log’ 14i-4dq-dijV(4i) ’ aaj 
(17) 

Bij-j log lqi-414 (18) 
ac2j 

and 

Gi = C'i, - $Ei,\r- q(q1)r"*(q,)di, (19) 

Hi = Di, + ;Fi, - V(q1) '3'2(q1) 6i, (20) 

where 

ciI = \ P(q) log’ 1qj - 41 dq 
-ticI, 

Di,= f F(q) log’ 14; - q I dq 
-ao, 

(21) 

(22) 

(23) 

(24) 



BIE FOR NONLINEAR SINGULAR PROBLEMS 251 

In each of the expressions (19)-(24), r(q) = Is(S) - (11 where q(S) is the position 
of the singularity, and 6, is the Kronecker delta. The integrals A, and B, may be 
evaluated analytically regardless of the position of qi provided that ZQj is a straight 
line segment [5, 71. However, the integrals Gil, Di,, Ei, and Fi, may only be 
evaluated analytically when qi is collinear with the straight line segments S2, and 
%QR,: the resulting expressions are given in the Appendix. For the general position of 
qi, Ci,, Di,, Ei,v and Fi, were evaluated numerically to a relative error of 10m8 using 
Patterson’s Quadrature [22]. 

Reverting to the physical variables, Eqs. (7) and (16) give the algebraic equations 
for p and o’ as 

,v- 1 

5 AijVjg(ulj) + I r Bijqj k(qj) + Aii T” 

j=2 j=l 

+E,Gi+E,ffi=O, i = I,..,, N. (25) 

These nonlinear algebraic equations are supplemented by Eq. (8) and the 
discretised forms of conditions (12). The complete system lends itself ideally to 
solution by the Newton Raphson method [ 181, as g and k are known functional 
forms of p and therefore the Jacobian of the system may readily be evaluated by 
explicit partial differentiation. The iterative procedure employed is similar to that 
used by Ingham et al. [ 151 and so the details are not reproduced here. As noted by 
Ingham et al. ]15], the convergence of such an iterative procedure is not necessarily 
guaranteed even if the iteration is initiated with a guess close to the desired root. 
However, no such difficulties were encountered in the present work: a wide range of 
system parameters were tested and convergence was always achieved even for the 
most nonlinear systems. Writing the unknowns of Eqs. (25) as the N-vector 

and hence rewriting Eqs. (25) as 

F,(x) = 0, i = l,..., pd (27) 

then convergence was considered achieved when both 

IFi(xcn))l < 1O-8, i = l,.,., N (28) 

and 

X!n’ I 
_ X!ll+ 1) 

& < 10-8, i = l,..., N 
I I 

where a superscript n refers to the value of the unknowns on the n th iteration. The 
iterations were initiated with- 

.y!l’ = 1 I i = l,..., N. 
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Having solved for x, the values of a,, s2 ; q)2 ,..., qN and wi ,..., q;?-i are all known. 
Equations (6) are then used to evaluate T, ,..., TN and T; ,..., y%r- i . Then a discretised 
form of Eq. (15) is used to solve for T(p) at the general point p E Q + 8.Q. Finally, 
p(p) is obtained from the first of Eqs. (6) using Newton Raphson. The scaling in the 
formulation is such that 0 <p < 1 and in each of the problems considered in the 
present work, it was found that the q(p) so obtained was the unique solution within 
the above interval. Hence we have been able to evaluate the unique real solution even 
in the cases when the governing equation and boundary conditions are highly 
nonlinear. 

It is a straightforward process to improve the accuracy still further by assuming a 
piecewise linear or piecewise quadratic [6, 7] variation of T and T’ in (14a). 
However, this constitutes a change in the details rather than the concepts of the 
present work. In fact, using only a piecewise constant variation of T and T’ on 3.0, 
the results were found to converge extremely rapidly with decreasing mesh size. 

RESULTS AND DISCUSSION 

The large number of system parameters precludes any exhaustive variation in the 
parameters of Eq. (8) and conditions (11). Consequently results were obtained for 
five different parameter lists, referred to as cases I, II, III, IV and V having the 
following details: 

Case k, k, k, al P, Yl P? 

I 1.0 0 0 0 0 0 0 0 

II 1.0 0.1 -0.01 0 -0.01 0 0 -0.1 

III 1.0 1.0 1.0 0 -0.01 0 0 -0.1 

IV 1.0 1.0 1.0 0 -1.0 -1.0 0 -1.0 

V 1.0 10.0 100.0 0 -1.0 -1.0 0 -10.0 

- 
3’2 

__~ 

0 

-0.0 1 

0 

-1.0 

-10.0 

Case I represents the linear problem whose results will be compared with those of the 
SS technique [5] and the CTM [21]. Case II is one in which the system parameters 
are physically appropriate to many heat transfer problems. The nonlinearity of the 
problem increases in terms of the boundary conditions as we go from case III to 
case IV and then in terms of the coefficients of the governing equation as we go from 
case IV to case V, so that case V represents an extremely nonlinear problem. 

In Table I we present the values of the coefficients in the truncated series expansion 
(13), denoted by E, and a2. Results for each case are given for four discretisations 
comprising 30, 60, 120 and 240 segments of equal length so that the convergence of 
results with decreasing mesh size may be investigated. So rapid is the rate of 
convergence that the values of ai at N= 30 vary by less than 0.25% from those at 
N = 240 for even the most nonlinear case, this variation diminishing to 0.05 % by the 
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TABLE I 

Singularity Series Expansion Coefficients 

I 30 -0.4843 0.0313 2 
I 60 -0.4844 0.03 13 2 

I 120 -0.4845 0.03 14 2 

I 240 -0.4845 0.0315 2 

II 30 -0.5 117 om43 4 

II 60 -0.5117 0.03G -1 

II 120 -0.5 118 0.0345 4 

II 240 ~0.5119 0.0345 4 

III 30 -0.8983 0.0608 5 

III 60 -0.8984 0.0609 5 

III 1’0 -0.8985 0.06iO 6 

III 240 -0.8986 0.06 11 6 

I\’ 30 -0.9768 0.0634 6 

IV 60 -0.9758 0.0639 6 

I\- 120 -0.9757 0.0610 7 

iv 240 -0.9758 C.0641 6 

v 30 -2 1.4208 1.4801 4 

v 60 -21.3866 1.4902 9 

v 120 -21.3791 1.4912 4 

v 240 -21.3780 1.4914 9 

time N = 60. The results of case I may be compared with those of Symm [5 j* who 
obtains the values E, = -0.4835 and s2 = 0.02988, so that the E, of the present 
method is only 0.206 in error from that predicted by the SS technique. IIowever, the 
value of E* is some 3 0’0 in error from that obtained in [ 5] and this is due to the fact 
that in the SS technique, the behaviour of Eq. (13) is applied to the whole of R, 
whereas in the present study it is restricted to the region (v: 0 < Y < Q(N-I)}. Thus 
the present modification of the BIE gives comparable convergence to the SS 
technique even though it requires far less programming and code. 

Also given in Table I are the number of iterations required for the satisfaction of 
conditions (28) and (29), where for each case and discretisation, all unknowns in the 
iterative scheme were initially set equal to unity. Note that even the most nonlinear 
problem, case V, required as few as nine iterations to satisfy the convergence criteria. 

Table II shows classical BIE results of q(p) for case V at equally spaced field 
points in the solution domain -5 < x < 5, 0 < J’< 1 for the discretisations N = 30, 
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TABLE II 

Classical BIE Results for Case V 

, N = 30 
, =63 
, = 120 
, = 240 
+ ------- - 

-0.2670 O.iiJ34 0.;220 3.c223 
-0.1423 0.0019 0.0031 0.0031 
-0.0417 0.0003 0.0004 0.0004 
-3.0099 0.0000 O.COOO o.ooio 

i 0.0879 i 0.3430 i 0.4316 
I 0.0976 I 0.5432 , 0.4319 + --_-----*-_______ * ______-_ .+- 
I 0.1130 I 0.4731 I 0.5815 
i 0.1293 i 0.4732 i 0.5926 
I 3.1312 , 0.4736 , 0.5832 
, 0.1315 , 0.4797 , 0.5854 
*--------* ---_--__ * ______-_ 
I ').I613 , 0.6154 , 0.7166 
1 3.1712 I 0.6366 , 0.7174 
I 0.1756 I 0.6070 , 0.7179 
I 5.1762 I C.&J71 , 0.7160 

I 
.*- 

I 0.2504 , 0.7713 , 0.3555 
I 0.2319 , 0.7714 , 0.3535 I 
I 0.2428 , 0.7715 , 3.3597 
I 0.2455 , II.7716 , 0.9583 
.------- -._____---*________ .+- 

.* 
I 
I 
I 
I 

,t 
I 
I 
I 
I 

.*- 
I 
I 
I 
I 

.*- 
I 
I 

I 

- - - - - - - _ .+. 
0.4550 I 
0.4579 
0.4593 I 
0.4600 1 

__-_ -__- .+. 
0.6005 I 
0.6043 I 
0.6062 
0.6072 I 
- - -- - - _ .+. 
0.7131 I 
0.7131 
0.7206 I 
0.721e 
- - - _ _ _ _ .+, 
0.8161 I 
0.3238 I 
0.8274 
0.8291 I 

0.0115 
0.0016 
0.0002 
0.0000 

c.0047 -O.CCG? -0.0023 -0.C602 -G.15C+ 
0.0007 0.0000 -O.OOOJ -0.0002 -0.0731 
0.0001 0.0000 o.ooco 
U.0000 O.OOiO 3.OGCb 

___-____f________l________ 

0.4250 , 0.3733 , 0.3247 
0.4264 I C.3@26 I 0.3282 

+--------I 

, 0.2563 I 0.1507 
I 0.2596 I 0.1552 

0.4281 i 0.3894 i 0.3500 
0.4290 , 0.3853 , 0.3309 __--____ + ____--_ - .________ 
0.5552 I 0.9960 I 0.4257 
0.5593 1 0.500~ i 0.4303 
0.5622 , 0.5c32 ( 0.4326 
0.5634 , o.sc4: , 0.*3.53 

0.0000 -0.0200 
0.0000 -0.0667 

i 0.2612 i 0.1544 
, 0.2620 I O.lSSO 

0.1211 , 0.6241 , 0.5;76 
0.7294 , 0.6313 , 0.5133 
0.7336 , 0.6350 I 0.5370 
0.7357 , 0.6365 , 0.5366 

G.9150 , 0.2525 
0.4242 I 0.2556 
0.4269 , 0.2572 
0.4282 I 0.25&l 

1 0.9036 I 1.0305 I 1.0002 , I.0006 1 1.0094 , 0.9232 , 0.7527 , 0.6425 , 0.5399 , 0.4272 , 0.2416 
I 0.5147 I 1.0001 I 1.0002 I 1.0001 1 1.0000 , 0.3456 , 0.7630 , 0.6502 , 0.5470 , 0.4336 , 0.25wi 
I 0.8345 I 1.0002 I 1.0000 , 1.0000 I 1.0000 , 0.9620 , 0.7685 , O-6544 , 0.5505 , 0.4367 , 0.260Y 
I 0.8611 I 1.0150 I l.JOOO I l.COCO , 1.0050 , 0.9733 , 0.7713 , 0.6565 , 0.5523 , 0.4362 , 0.263; 
*--------~--------*--------+--------*--------~--------+--------+--------*--------+--------. 

s 

60, 120 and 240. Inspection of the results near the singularity S reveals the poor 
convergence of results with increasing N. Moreover, the results throughout the entire 
solution domain are somewhat slow to converge as the mesh is refined. 

In Table III we present an equivalent distribution of results for case V obtained 
with the present method. The rate of convergence has been dramatically accelerated 
so that for N = 60, results at interior points differ by only O(O.Ol%) from those 
obtained with N = 240, as opposed to O(l%) for the equivalent classical BIE 
discretisation. The only region of R at which this level of convergence has not quite 
been achieved is along the boundary s = - 5, where inspection of condition (1 le) 
reveals that for case V, there are highly nonlinear contributions to the boundary 
condition from the radiative flux term. 

The accuracy quoted above held throughout the entire solution domain in case I to 
IV--only the results of case V have been presented in order to demonstrate the fact 
that convergence was obtained for even the most nonlinear system. 

The choice of parameters in case I were such that a comparison with the analytical 
results of the CTM [21] could be made. It was found that the potential evaluated at 
the general field point using the present BIE differed from that in [21] by only 
O(O.0196) for N as low as 60 thus indicating the rapid acceleration in the rate of 
convergence of BIE results to the exact analytical results. 
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TABLE III 

Modified BIE Results for Case V 

, u = 30 
i -6: 
, = 120 
, = 240 

, 0.1607 , 0.6061 
, II*1719 , 0.6071 
, 0*?756 , 0.6572 
, 0.1762 , 0.6072 .;. + _------- + -------- 
, 3.2309 , 0.7716 
, 0.2320 I 0.7716 
, 0.2422 , 0.7716 i 
, llr2*55 , 3.7716 I 
.________ * -------- .+ 

o-,1,9 I 0.7553 
0.7161 j 0.7563 
0.7182 , 11.7564 
0.71a2 , 0.7565 

_------- + -------- t. 
0.a591 / O.SE19 
o.a589 i 0.8621 
0.3589 , 0.8822 
0.3589 , C.8823 _- - -- --- * - -- - - --- 

i 
1 .+ 

CONCLUSIONS 

PL modification of the classical BIE has been presented which enables accurate 
treatment of a class of nonlinear elliptic equations containing boundary singularities. 
The method requires a slight modification of the classical BIE with the reward of a 
dramatic improvement in the rate of convergence of results throughout the entire 
solution domain. It may be applied to any geometry for which the analytic form of 
the singularity can be obtained and the use of the Kirchoff transformation means that 
it is applicable to problems posed in terms of T which could not be treated by the SS 
technique were the problem to be posed in terms of p. 

The form of the singularity will of course affect the integrals Gil, Dir, Ei, and FI,,; 
but these may still be evaluated with sufficient accuracy via Patterson’s Quadrature 
[22] and so impose no restriction on the class of problems to which the method may 
be applied. 

The present paper has concentrated on the example in heat transfer but the method 
is equally well suited to solving any equation of the form 

for which the (bounded) dependence off on p is known. 
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As the analytic nature of the singularity is incorporated only on those boundary 
segments nearest S, the modification of the classical BIE is minimal and so requires 
very little extra cpu time. Moreover the improved convergence properties mean that 
accurate results may be obtained for relatively crude discretisations. 

Note that if the boundary was approximated by piecewise-curved sections on either 
side of the singularity, the imposition of boundary conditions (12) on the sections 
nearest the singularity could only be effected after one (or more) linearising transfor- 
mation(s): this in turn would transform the remainder of the boundary into a more 
intricate geometry and would complicate the ensuing algorithm substantially. To 
include the solution of such a problem in the present paper would detract from the 
main aim of this work, which was to combine the application of the Kirchoff 
transformation with the treatment of singularities. 

APPENDIX 

The integrals Ci,, Dir, Ei,, and Fir may be evaluated analytically when qi and the 
endpoints of the straight line segment 80, are collinear. From Fig. 2, there are only 
five qualitatively distinct positions of qi relative to 80, and these are: (i) qi = qR ; (ii) 
qi = qjv; (iii) qi = q,,l; (iv) qi = q,+ r and (v) qi = qr . Using the notation of Fig. 2, let 
h=lq,4,-,-qxl, a=jq,p,-qiI and b=lq,-q,l. Then in each of cases (i)-(v), 
Ci, = Di, = 0, and the remaining integrals are as follows: 

(i) qi = qR: if1, = 2b”‘tan-1[(h/b)1!2] -2/z”’ 

and I, = -ih3j2 - bI, 

then Ei,v = -2 [h ‘I2 log a + I,] 

and F, = -3[h3” log a + I,]; 

(ii) qi = qhr: if I, = -2h ‘I* 
and I 

2 
= -Zh3!2 

3 

then E, = -2 [h 1!2 log h + I,] 

and F, = -5 [h3i2 log h + I,]; 

(iii) qi = qiw: if I, = b112 log ((b1’2 + h ‘!‘)/(bl’* - h”‘)I - 2h”’ 

and I, = -;h3.‘2 + bI, 

then E, and FiN are as in (i); 

qL qN qR 
y = 0 .-* ,-t-. . 

I qN 

FIG. 2. Notation for analytic evaluation of integrals. 
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(iv) qi = q,vp l: if I, = h 1’2 log 4 - 2h 1’2 

and I 2 = --$h3” + h1, 

then Ei, and F, are as in (ii); 

(v) qi = qL: both E, and F, are as in (iii). 

Although extra analysis is required for the analytic evaluation of these integrals, 
one finds them necessary insofar as the numerical quadrature may become 
computationally expensive when qi is on or near 352,, for then the kernels of the 
integrals Ei,v and F, become logarithmically singular. These analytic integrations 
ensure accurate results in the neighbourhood of S and are of course applicable to any 
problem containing a singularity of the form given in (13). 
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